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This paper considers three measures of the systemic impor-
tance of a financial institution within an interconnected finan-
cial system. The measures are applied to study the relation
between the size of a financial institution and its systemic
importance. Both the theoretical model and empirical analy-
sis reveal that, when analyzing the systemic risk posed by one
financial institution to the system, size should not be consid-
ered as a proxy of systemic importance. In other words, the
“too big to fail” argument is not always valid, and measures of
systemic importance should be considered. We provide the esti-
mation methodology of systemic importance measures under
the multivariate extreme value theory (EVT) framework.

JEL Codes: G21, C14.

1. Introduction

During financial crises, authorities have an incentive to prevent the
failure of a financial institution because such a failure would pose
a significant risk to the financial system, and consequently to the
broader economy. A bailout is usually supported by the argument
that a financial firm is “too big to fail”: that is, larger banks exhibit
higher systemic importance. A natural question arising from the
debate on bailing out large financial firms is why particularly large
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banks should be favored: are banks really too big to fail? An equiv-
alent question might also be posed: does the size of a bank really
matter for its systemic impact if it fails? The major difficulty in
answering such a question is to design measures on the systemic
importance of financial institutions. More specifically, we need to
measure to what extent the failure of a particular bank will “con-
tribute” to the systemic risk.

This paper deals with the problem in four steps. Firstly, we
discuss the potential drawbacks of existing measures of systemic
importance and propose alternatives that overcome these drawbacks.
Secondly, we construct a theoretical model to assess whether larger
banks correspond with higher systemic importance. Thirdly, we
employ statistical methodology in estimating such measures within
a constructed system consisting of twenty-eight U.S. banks. Finally,
we use the estimated systemic importance measures and the size
measures to empirically test the “too big to fail” statement.

Although the term “too big to fail” appears frequently in sup-
port of bailout activities, its downside is well acknowledged in the
literature. Besides the distortion of the market discipline, the pref-
erence given to large financial firms encourages excessive risk-taking
behavior, which potentially imposes more risk. Therefore, using the
“too big to fail” argument to support intervention will result in a
moral hazard problem: large firms that the government is compelled
to support were among the greatest risk takers during the boom
period. Furthermore, such a moral hazard problem will provide an
incentive for firms to grow in order to be perceived as “too big to
fail” (see Stern and Feldman 2004 for more discussions on the moral
hazard problem).

Recently, both policymakers and academicians have begun to
distinguish the size of a financial institution from the systemic
importance it has by introducing new terms focusing on what the
potential systemic impact might be if that particular institution
fails. For example, Bernanke (2009) addresses the problem of finan-
cial institutions that are deemed “too interconnected to fail”; Rajan
(2009) uses the term “too systemic to fail” to set the central focus
of new regulation development. This urges the design of alternative
measures on systemic importance. Measuring the systemic impor-
tance of financial institutions is particularly important for policy-
makers. It is the key issue in both financial stability assessment
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and macroprudential supervision. On the one hand, during crises,
it is necessary to have such measures in order to justify bailout
actions. On the other hand, it is crucial to supervise and monitor
banks with higher systemic importance during regular periods. Pol-
icy proposals for stabilizing the financial system always rely on such
measures. For instance, charging a deposit insurance premium is an
alternative proposed by Acharya, Santos, and Yorulmazer (2010) for
defending systemic risk. Systemic importance measures can serve as
an indicator for pricing the corresponding insurance premium or
taxation.

A few applicable measures of systemic importance have appeared
in recent empirical studies. Adrian and Brunnermeier (2008) pro-
posed the conditional value-at-risk (CoVaR) for measuring risk
spillover. Similar to the value-at-risk measure, which quantifies the
unconditional tail risk of a financial institution, the CoVaR quan-
tifies how the financial stress of one institution can increase the
tail risk of others. These measures demonstrate the bilateral rela-
tion between the tail risks of two financial institutions. The setup
of the CoVaR measure indicates that it is designed for bilateral risk
spillover. When applying CoVaR to assess the systemic importance
of one financial institution to the system, it is necessary to construct
a system indicator on the status of the system and then to analyze
the bilateral relation between the system indicator and a specific
bank. However, the complexity of the financial system is of a higher
order than bilateral relations. Thus, a general indicator of the system
is usually difficult to construct. Furthermore, the CoVaR measure is
difficult to generalize into a systemic context in order to analyze mul-
tiple financial institutions all together. As an alternative, Segoviano
and Goodhart (2009) introduced the “probability that at least one
bank becomes distressed” (PAQO). Comparing these two measures,
we observe that the CoVaR is a measure of conditional quantile,
while the PAO is a measure of conditional probability, which acts as
the counterpart of conditional quantile. Within a probability setup,
generalization from bivariate to multivariate is possible. However,
the PAO measure focuses on the probability of having a systemic
impact that there will be at least one extra crisis, without spec-
ifying how severe the systemic impact is. Therefore, the measure
may not provide sufficient information on the systemic importance
of a financial institution. Our empirical results partially reflect the
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less informative feature of the PAO: the PAO measures remain at a
constant level across different financial institutions and across time.

Extending the PAO measure while staying within the multivari-
ate context, we propose the systemic impact index (SII), which meas-
ures the expected number of bank failures in the banking system
given a situation in which one particular bank fails. Clearly, the SII
measure emphasizes more the systemic impact. We also consider a
reversed measure: the probability that a particular bank fails, given
that there exists at least one other failure in the system. This we
refer to as the vulnerability index (VI).

To test “too big to fail,” we first consider a theoretical model
from which both size and systemic importance measures can be
explicitly calculated. The model stems from the literature on sys-
temic risk. In the literature, two categories of models consider crisis
contagion and systemic risk in the banking system: banks are sys-
temically linked via either direct channels such as interbank markets
or indirect channels such as similar portfolio holdings in bank bal-
ance sheets. Studies in the first category focus on the contagion
effect; i.e., a crisis in one financial institution may cause crises in the
others. The second category of studies focuses on modeling systemic
risk; i.e., crises of different financial institutions may occur simulta-
neously. For the first category of studies, particularly on modeling
the interbank market, see Allen and Gale (2000), Freixas, Parigi,
and Rochet (2000), and Dasgupta (2004). Cifuentes, Shin, and Fer-
rucci (2005) consider two channels: similar portfolio holdings and
mutual credit exposure. They show that contagion is mainly driven
by changes in asset prices. Hence the indirect channel dominates.
For models focusing on the indirect channel, Lagunoff and Schreft
(2001) assume that the return of one bank’s portfolio depends on
the portfolio allocation of other banks, and they show that crises
can either spread from one bank to another or happen simultane-
ously due to forward-looking behavior. De Vries (2005) starts from
the fat-tail property of the underlying assets shared by banks, and
he argues that this creates the potential for systemic breakdown.
For an overview of contagion and systemic risk modeling, we refer
to de Bandt and Hartmann (2001) and Allen, Carletti, and Babus
(2009).

The contagion literature focuses mainly on explaining the exis-
tence of a contagion effect: how a crisis in one financial institution
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leads to a crisis in another. Thus, the models usually consider the
risk spillover between only two banks. To address the financial sys-
tem as a complex entity, several studies have considered network
models combined with bilateral spillover. Following those theoret-
ical studies, empirical analyses, such as the CoVaR measure, were
then designed for measuring bilateral relations. In order to address
the systemic importance issue within a systemic context, we must
consider a multibank approach. Thus, we establish our theoretical
model based on the indirect channel models: similar portfolio hold-
ings lead to the possibility of simultaneous crises. The fundamental
intuition is that banks are interconnected due to the common expo-
sures on their balance sheets. Thus, the systemic importance of a
particular bank is closely associated with the number of different
risky banking activities in which the bank participates. This, in turn,
may not be directly associated with the bank’s size. In other words,
“too big to fail” is not always valid. Our model further shows that
banks concentrating on few specific activities can grow large without
increasing their systemic importance.

We acknowledge a potential downside of considering the indi-
rect channel model: it does not provide a model on the causality
effect. Nevertheless, even without addressing the contagion effect,
investigating systemic importance based on the systemic risk of hav-
ing simultaneous crises is an important issue. This comes from the
“too many to fail” phenomenon discussed by Acharya and Yorul-
mazer (2007). They consider a game theory approach and show that
because regulators would bail out a bank in distress only if a large
part of the system suffers from distresses, individual banks would
have an incentive to hold similar portfolios in order to increase the
possibility of being rescued when a crisis occurs. Such a “too many
to fail” phenomenon is in line with the intuition that when evalu-
ating systemic importance of a financial institution, it is necessary
to evaluate to what extent the crisis of the financial institution is
accompanied by crises of others. Therefore, we choose to build the
systemic importance measure on an indirect channel model.

The theoretical finding that “too big to fail” is not always valid
contributes to policy discussions on micro-level risk management and
macro-level banking supervision. Since diversification is the usual
tool in micro-level risk control, financial institutions, particularly
the large ones, tend to take part in more banking activities in order
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to diversify away their individual risk. This may, however, increase
their systemic importance. It is important to acknowledge the trade-
off between managing individual risk and maintaining independence
within the entire banking system. Portfolio construction toward
reduction in individual risk may imply a transfer of risk to systemic
linkage and thus increase the systemic importance. Therefore, pru-
dential regulations which limit individual risk taking, such as Basel
I and II type regulations, are not sufficient for maintaining stability
of the entire financial system. Macroprudential supervision which
considers the system as a whole is necessary for achieving financial
stability. A macroprudential approach requires careful consideration
of both individual risk taking and the systemic importance of each
individual financial institution.

Next, we demonstrate how to empirically estimate the proposed
systemic importance measures. We adopt the multivariate extreme
value theory (EVT) framework for empirical estimation. In any
investigation of crises, or rare events, the major difficulty is the
scarcity of observations on crisis events. Since our intention is to
address the interconnectedness of the banking crises, which is in
effect a joint crisis, the difficulty with regard to the shortfall in
observations is further enhanced. A modern statistical instrument—
EVT—Aills the gap. The essential idea of EVT is to model the
intermediate-level observations, which are close to extreme, and
extrapolate the observed properties into an extreme level. Therefore,
the interconnectedness of crises can be approximated by the inter-
connectedness of tail events, which are not necessarily at a crisis
level. Univariate EVT has been applied in value-at-risk assessment
for individual risks (see, e.g., Embrechts, Kliippelberg, and Mikosch
1997). Recent developments on multivariate EVT provide the oppor-
tunity to investigate extreme co-movements, which serves our pur-
pose. For instance, EVT was applied to measure risk contagions
across different financial markets in Hartmann, Straetmans, and de
Vries (2004) and Poon, Rockinger, and Tawn (2004). An application
of multivariate EVT in analyzing bilateral relations within the bank-
ing system can be found in Hartmann, Straetmans, and de Vries
(2005). Beyond bivariate relations, the Global Financial Stability
Report published by the International Monetary Fund in April 2009
(IMF 2009) demonstrates—using EVT analysis—the interconnec-
tion of financial distress within a system consisting of three banks.
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Our empirical estimation of the systemic importance measures uses
multivariate EVT without restricting the number of banks under
consideration.

We provide an empirical methodology with which to estimate
the systemic importance measures—PAOQO, SII, and VI—under the
multivariate EVT framework. We conduct an exercise for a con-
structed system consisting of twenty-eight U.S. banks and test the
correlation between the systemic importance measures and differ-
ent measures on size. We find that, in general, systemic importance
measures are not correlated with all bank size measures. Hence, the
size of a financial institution should not be considered as a proxy
of its systemic importance without careful justification. This agrees
with our theoretical model. Overall, we conclude that it is neces-
sary to have proper systemic importance measures for identifying
the systemically important financial institutions.

2. Systemic Importance Measures

We consider a banking system containing d banks with their status
indicated by (X7,..., X4), where an extremely high value of X; indi-
cates a distress situation or a crisis in bank i. Potential candidates
for such an indicator might include the loss of equity returns, loss
returns on total asset, or credit default swap (CDS) rates.

To define a crisis, it is necessary to consider what constitutes a
properly high threshold. Our approach takes value-at-risk as such a
threshold. For the distress status X of a financial institution, a VaR
at a tail probability level p is defined by

P(X > VaR(p)) = p.

Prudential regulations consider the p-level as 1 percent or 0.1 percent
in order to evaluate risk-taking behavior of an individual institution.
We say that a bank is in crisis if X > VaR(p) with an extremely low
p. Here, we do not specify the level p explicitly. Instead, we impose
a restriction that the p-level in the definition of banking crises is
constant across all banks. Notice that banks may differ in their risk
profiles, which results in different endurability on risk, i.e., different
VaR(p). Thus, a unified level of loss for crisis definition may not fit
the diversified situation of different financial institutions. Instead,
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an extreme event X > VaR(p) corresponds to a return frequency
as 1/p. Fixing such a frequency for crisis definition takes account of
the diversity of bank risk profiles. Furthermore, such a definition is
aligned with the usual crisis description: for example, with yearly
data, a p equal to 1/50 corresponds to “a crisis once per fifty years.”

The systemic importance measures consider the impact on other
financial institutions when one of them falls into crisis. We start from
the measure proposed by Segoviano and Goodhart (2009): the con-
ditional probability of having at least one extra bank failure, given
that a particular bank fails (PAO). In our model, this measure is the
following probability:

PAO;(p) == P({3j #1i, st. X; >VaR;(p)}|X; > VaR;(p)). (1)

We argue that the PAO measure may not provide sufficient infor-
mation for identifying the systemically important banks. Consider
the following example. Suppose we have a banking system with
banks categorized into two separate groups. Banks within each group
are strongly linked, while banks from the two groups are indepen-
dent of each other. One group contains only two banks, X; and X5,
while the other group contains more banks, X3,..., Xy, d > 4. In
other words, X; and Xs are highly related; Xs,..., Xy are highly
related; and X; and X, are independent for any 1 < 7 < 2 and
3<j<d

Then the PAO measure for X;, PAO;, will be close to 1 since
a crisis of X; will be accompanied by a crisis of X5. However, the
PAO measure for X3, PAQO3, will also be close to 1 because of similar
reasoning. When d is high, it is clear that X3 is more systemically
important than X; because it is associated with a larger fraction of
the entire banking system. However, this will not be reflected by the
comparison between PAQO, and PAQOs3. In this example, PAO; and
PAO;3 should be at a high, comparable level.

Generally speaking, the PAO measure only provides the prob-
ability of a systemic impact when one particular bank fails—that
is, an extra crisis occurring in other financial institutions. It does
not specify the size of such an impact—that is, the number of extra
crises in the entire system. Hence, if every institution in the system
is connected to a certain fraction of the system, the PAO measures
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of all should stay at a high, comparable level. With indistinguish-
able PAO measures, it is not sufficient to identify the systemically
important financial institutions.

A natural extension of the PAO measure is to consider the
expected number of failures in the system, given that a particu-
lar bank fails. This is defined as our systemic impact index (SII).
Using the notation above, it can be written as

d

SIli(p) = F Z Lx,>var,;p)|Xi > VaRi(p) |, (2)
j=1

where 14 is the indicator function that is equal to 1 when A holds,
and is 0 otherwise.

Since the PAO and SIT measures characterize the outlook of the
financial system when a particular bank fails, a reverse question is
what the probability of a particular bank failure is when the sys-
tem exhibits some distress. To characterize the system distress, we
use the same term as in the PAO measure: there exists at least one
other bank failure. Hence, we define a vulnerability index (VI) by
swapping the two items in the PAO definition as follows:

VIi(p) .= P(X; > VaR;(p){3j #1i, st. X; >VaR;(p)}). (3)

From the definitions, all three measures summarize specific infor-
mation on the risk spillover in the banking system. It is necessary
to consider all of them when assessing the systemic importance of
financial institutions.

3. Extreme Value Theory and Systemic Importance
Measures

3.1 The Setup of Extreme Value Theory

Consider our d-bank setup. Modeling the crisis of a particular finan-
cial institution ¢ corresponds to modeling the tail distribution of
X;. Moreover, modeling the systemic risk—i.e., the extreme co-
movements among (X1,..., X )—corresponds to modeling the tail
dependence structure of (Xi,...,X;). Extreme value theory pro-
vides models for such a purpose.
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To assess VaR with a low probability level p, univariate EVT can
be applied in modeling the tail behavior of the loss. Since our focus
is on systemic risk, we omit the details on univariate risk modeling
(see, e.g., Embrechts, Kiippelberg, and Mikosch 1997). Multivariate
EVT models consider not only the tail behavior of individual X; but
also the extreme co-movements among them.

The fundamental setup of multivariate EVT is as follows. For
any xi,Ts,...,xq > 0, as p — 0, we assume that

P(X;1 > VaRy(x1p) or -+ or Xq > VaRi(xgp))
p

— L(x1,22,...,24), (4)

where VaR; denotes the value-at-risk of X;, and L is a finite positive
function.! The L function characterizes the co-movement of extreme
events that X; exceeds a high threshold VaR;(z;p). (z1,...,24) con-
trols the level of high threshold, which in turn controls the direction
of extreme co-movement. For the property on the L function, see de
Haan and Ferreira (2006).

The value of L at a specific point, L(1,1,...,1), is a measure of
the systemic linkage of banking crises among the d banks. From the
definition in (4), we have

L1, 1) = liH(l) P(X71 > VaRy(p) or ... or X4 > VaRd(p)).
p— P
(5)

In the context of our banking system, when p is at a low level, it
approximates the quotient ratio between the probability that there
exists at least one bank in crisis and the tail probability p used in the
definition of individual crisis. For the bivariate case, this was con-
sidered by Hartmann, Straectmans, and de Vries (2004) in measuring
systemic risk across different financial markets.

'Notice that considering the union of the events—i.e., using “or” in
(4)—is simply a result of the definition of the distribution function. Define
F(zi,...,2zq) = P(X1 < z1,...,Xq < z4) as the distribution function of
(X1,...,X4). In order to consider the tail property, the assumption is made
on the tail part 1 — F', which is the probability of the union of extreme events as
in relation (4).
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Note that the L function is connected with the modern instru-
ment of dependence modeling—the copula. Denote the joint distri-

bution function of (Xy,..., Xy) as F(z1,...,x4) while the marginal
distributions are denoted as F;(x;) for i = 1,...,d. Then there exists
a unique distribution function C(z1,...,z4) on [0, 1]¢, such that

F(x1,...,2q) = C(Fi(21), ..., Fa(za)),

where all marginal distributions of C' are standard uniform distri-
butions. C' is called the copula. By decomposing F' into marginal
distributions and copula, we separate the marginal information from
the dependence structure summarized in the copula C. Condition (4)
is equivalent to the following relation. For any x1,zs,...,xq4 > 0, as
p—0,

1-C(1—pzxy,...,1 —pzxy)
p

— L(z1,22,...,%4).

Hence the L function characterizes the limit behavior of the cop-
ula C at the corner point (1,...,1) € [0,1]% In other words, the L
function captures the tail behavior of the copula C.

Linking the L function to the tail behavior of copula yields the
two following views. Firstly, since it is connected to the copula, the L
function does not contain any marginal information. Thus, in mod-
eling the linkage of banking crises, the L function is irrelevant to the
risk profile of the individual bank. Secondly, in characterizing the
tail behavior of a copula, the L function does not contain depen-
dence information at a moderate level, as in the copula C. Instead,
L only contains tail dependence information. To summarize, the L
function contains the minimal amount of required information in
modeling extreme co-movements. Therefore, models on L are flexi-
ble to accommodate all potential marginal risk profiles and potential
moderate-level dependence structures. Compared to Segoviano and
Goodhart (2009), who consider the Consistent Information Multi-
variate Density Optimizing (CIMDO) approach on estimating the
copula C, since models on the copula C' incorporate the intercon-
nection of banking systems in regular time, estimating a copula
model may misspecify the tail dependence structure. Because we
intend to model the interconnection of banking crises, considering
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the L function in the multivariate EV'T approach is sufficient and
less restrictive.

3.2 Systemic Importance Measures under Multivariate EVT

Under the multivariate EVT setup, the limit of the three systemic
importance measures can be directly calculated from the L function.
Notice that in the definitions of these measures, the probability level
p for defining crisis is considered. However, we prove that, as p — 0,
the systemic importance measures can be well approximated by their
limits.

The following proposition shows the limit of the PAO measure.
The proof is in appendix 1.

PROPOSITION 1. Suppose (X1, Xa,...Xy) follows the multivariate
EVT setup. With the definition of PAO in (1), we have

PAO; := lim PAOi(p) = Lyi(L,1,...,1) + 1 = L(L,1,...,1), (6)
p—>

where L is the L function characterizing the tail dependence of
(X1,...,Xq), and Lx;(1,1,...,1) is the L function characterizing
the tail dependence of (X1,...,Xi—1, Xit1,...Xa).

Notice that L is defined on R?, while L; is defined on R4~1. More-
over,

Ls(1,1,...,1) =L(1,1,...,1,0,1,...,1),

where 0 appears at the i-th dimension.

Proposition 1 shows that when considering a low-level p, the
measure PAO;(p) is close to its limit denoted by PAQO;. For calcu-
lating PAQO;, it is sufficient if the L function is known. Therefore,
we could have a proxy of the PAO measure with low-level p by esti-
mating the L function. In a theoretical model, the L function can be
explicitly calculated. For an empirical analysis, the L function can
be estimated from historical data. We provide a practical guide for
estimating the L function in appendix 2. For more discussions, see
de Haan and Ferreira (2006).

Analogous to that of PAO, the limit of VI(p) exists under the
multivariate EVT setup. We present the result in the following
proposition but omit the proof.
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PROPOSITION 2. Suppose (X1, Xs,...Xq) follows the multivariate
EVT setup. With the definition of VI in (3), we have

. L4i(1,1,...,1)+1—-L(1,1,...,1)
lim VI () (11,1 (7)

with the same notation defined in proposition 1.
From propositions 1 and 2, we get the following corollary.
COROLLARY 1. PAQ; > PAQ; holds if and only if VI; > VI;.

Corollary 1 implies that when considering the ranking instead of the
absolute level, the VI measure is in fact as informative as the PAO
measure.

The following proposition shows how to calculate the limit of SII
under the multivariate EVT setup. The proof appears in appendix 1.

PROPOSITION 3. Suppose (X1, Xs,...X4) follows the multivariate
EVT setup. With the definition of SII in (2), we have

d
S11; := lim S1T;(p) = ;@ — Lij(1,1), (8)

where L; j is the L function characterizing the tail dependence of
(Xi, Xj).

Notice that
Li,j(Ll) = L(O7"'7071a0a"-7071707"-70)7

where 1 appears only at the i-th and j-th dimensions. We remark
that 2 — L; ;(1,1) is in fact a measure of bilateral relation between
the crises of banks X; and X;. Thus, the SII measure is an aggrega-
tion of measures on bilateral relations. This is parallel to the spillover
index studied in Diebold and Yilmaz (2009) when measuring volatil-
ity spillover in a multivariate system: after measuring the volatility
spillover between each pair, the spillover index is an aggregation of
the measures on bilateral relations.
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Again, proposition 3 shows that SII; is a good approximation of
SII;(p) when p is at a low level. And the estimation of SII; is only
based on the estimation of the L function. From the calculation of
PAO and SII, it is clear that the two measures provide different
information on systemic importance. A ranking based on PAO does
not necessarily imply the same ranking on SII. Thus, it is still nec-
essary to look at both of the measures in order to obtain a complete
picture on the systemic importance of a bank.

To summarize, the multivariate EVT setup provides the oppor-
tunity to evaluate all three systemic importance measures when the
L function is known. Since the L function characterizes the tail
dependence structure in (Xy,...,Xg), all the systemic importance
measures can be viewed as characterizations of the tail dependence
among banking crises.

4. Are Banks “Too Big to Fail”? A Theoretical Model

We construct a simple model showing that large banks might have
a lower level of systemic importance compared with small banks:
banks are not necessarily too big to fail.

We start by reviewing a simple model in de Vries (2005), which
explains the systemic risk within a two-bank system.

Consider two banks (X7, X3) holding exposures on two indepen-
dent projects (Y1, Y>2), as in the following affine portfolio model:

X1 =1 —-7)Y1 +9Ys, ()
X2 = ’}/Yl ‘I‘ (1 — ’}/)Yg,

where 0 < v < 1, (Y7,Y2) indicates the loss returns of the two
projects. To measure the systemic risk, de Vries (2005) considers
the following measure:

. P(X1> )+ P(Xs > )
lim F >1):=1 .
SL% (K|H - ) 8220 P(Xl > s or Xg > S)

(10)

Intuitively, E(k|xk > 1) is the expected number of bank crises in the
two-bank system, given that at least one bank is in crisis. Here, the
crisis of X; is defined as X; > s. It is proved that when Y;, i = 1,2
are normally distributed, lims_,, F(k|x > 1) = 1. Thus, given that
there exists at least one bank in crisis, the expected total number
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of crises is 1. Hence, there is no extra crisis except the existing one.
This is called a weak fragility case. In other words, the systemic
impact does not exist. To the contrary, suppose Y;, i = 1,2 follow
a heavy-tailed distribution on the right tail. The result differs. The
heavy-tailed distribution is defined as

P(Y; > s)=5"°K(s), i =1,2,
{P(Yi < —s)=o(P(Y; > s)), (11)

where a > 0 is called the tail index and K(s) is a slowly varying
function satisfying
K(ts)

I —1
imo K(s)

for all s > 0. De Vries (2005) proved that for v € [1/2,1],

lim E(klk>1)=1+(1/y—1)% > 1.
This is called the strong fragility case because one existing crisis
will be accompanied by potential extra crises. The empirical liter-
ature has extensively documented that the losses of asset returns
follow heavy-tailed distributions. Therefore, the latter model based
on heavy-tailed distributions reflects the empirical observations and
explains the systemic risk existing in the financial system.

We remark that when assuming the heavy-tailedness of (Y7, Ya),
and the affine portfolio model in (9), it is a direct consequence that
(X1, X») follows a two-dimensional EVT setup.? Moreover, if Y7 and
Y5 are identically distributed, for a fixed tail probability p, the VaRs
of X; and X, are equal; i.e., VaR;(p) = VaRy(p). Replacing s with
VaR;(p) in the definition of the systemic risk measure (10), and
asking p — 0, we get

X X P(X1 > VaRl(p)) + P(XQ > VCLRQ(p))
lim F >1):=1
oo (Klr = 1) ) P(X; > VaRy(p) or X5 > VaRy(p))
2
L(1,1)

For a formal proof, see Zhou (2008, ch. 5).
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Therefore, the setup in de Vries (2005) imposes a multivariate EVT
setup, and the measure on the systemic risk is essentially based on
L(1,1).

We point out that within this two-bank, two-project model, it
is not possible to differentiate the systemic importance of the two
banks. From the model and from proposition 1, we get

SIL =3 —L(1,1), i =1,2.

Hence the two banks have equal systemic importance measured by
SII. Similar results hold for the other two measures, PAO and VI.
Intuitively, within a two-bank setup, the linkage of crises is a mutual
bilateral relation. Hence, one could not distinguish the systemic
importance of the two banks. In order to construct a model in which
it is possible to compare the systemic importance at different levels,
it would be necessary to generalize the de Vries (2005) model to a
system consisting of at least three banks.

Next, we consider the size issue. In the de Vries (2005) two-bank
model, suppose that both of the two banks have total capital 1, and
both of the two projects receive capital 1. According to the affine
portfolio model (9), the capital market is clear. In this case, the two
banks have the same size in terms of total assets. In order to differ-
entiate the sizes of the banks, a more complex affine portfolio model
is necessary.

Addressing the two above-mentioned points, we consider a model
with three banks (X7, X5, X3) and three independent projects
(Y1,Y3,Y3). Suppose X7 holds capital 2 for investment, while X5 and
X3 hold capital 1 each. Moreover, suppose the project Y; demands
an investment 2, while Y5 and Y3 each have a capital demand 1.
Then the market is clear, with the following affine portfolio model:

X1=2-27)Y1 +7Y2 +7Y3
Xo=Y1 + (1 — v — p)Ya + uYs, (12)
Xz=Y1+puYo+ (1 —v—p)Ys,

where 0 < v, < 1, and v 4 p < 1. Clearly, this is not the only pos-
sible allocation for market clearance. Nevertheless, it is sufficient to
demonstrate our argument regarding the “too big to fail” problem.
Notice that X is a larger bank compared with X5 and X3. Here, the
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size refers to the total investment in the risky projects. We intend
to compare the systemic importance of X; with that of X, and Xs3.

The two parameters v and p are interpreted as the control of
similarity in portfolio holdings across the three banks. The parame-
ter v controls the similarity between the large bank and the small
banks. When 7 is close to 1, the strategy of the large bank is differ-
ent from that of the two small banks, while the two small banks hold
similar portfolios. When « = 1/2, the large bank has exposures on
all three projects proportional to their capital demands. Hence, the
large bank is involved in all projects. When ~ is close to 0, the large
bank is again different from the two small banks. In the latest case,
the similarity of the two small banks is further controlled by the
parameter u: a u lying in the middle of (0,1 — ) shows that the two
small banks are similar in portfolio holding, while a u lying close
to the two corners of (0,1 — ) corresponds to different strategies
between the two small banks.

Suppose all Y; follow a heavy-tailed distribution defined in (11)
for i = 1,2,3. Then, similar to the two-bank case, (X1, X2, X3) fol-
lows a three-dimensional EVT setup. Instead of discussing all pos-
sible values on the parameters (v, i), we focus on three cases: v is
close to 1, v = 1/2, and ~ is close to 0. The results from comparing
the SII measures are in the following theorem. The proof is again in
appendix 1.

THEOREM 1. Consider a three-bank, three-project model with the
affine portfolio given in (12). Suppose the losses of the three projects
exhibit the same heavy-tailed feature as in (11), with o > 1. We have
the following relations.

Case 1. 2<y<1

SSI, <1 =85 = SSIs.

1

CASE 2: v =3

SSI > SSI, = SSIs.

The equality holds if and only if p = 1/4.
CAsE3: 0<7y<3
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There exists a pu* < 1777 such that for any p satisfying u* < p <
I
SSI; < 85I, = SSI5.

On the other hand, for any u satisfying 0 < p < p* or 1 —v—p* <
w<1—r, we have

SSI1 > SSIQ = SSI?,
When p=p* or p=1—~v— p*,
SIh = SIl, = SIIs.

The following lemma shows that the comparison among the PAO
measures follows the comparison among the SII measures in the
three-bank model.

LEMMA 1. With the assumptions in theorem 1, the order of PAO
follows the order of SII; i.e., for any i # j, PAO; > PAO; holds if
and only if SII; > SII;.

Combining lemma 1 and corollary 1, we see that the order of VI also
follows the order of SII in the simple three-bank model. Notice that
the three-bank model is a very specific and simple case. The result
in lemma 1 does not hold in a general context when the number
of banks is more than three. Therefore, for empirical study within a
multibank system, it is still necessary to estimate all three measures,
which may provide different views.

We interpret the results in theorem 1 as follows.

If v is close to 1, the large bank X; focuses on the two smaller
projects Y5 and Y3, while small banks X5 and X3 focus on the large
project Y7. In this case, the balance sheet of the large bank is quite
different from that of the small banks, while the two small banks
are holding similar portfolios. Therefore, the large bank has less sys-
temic linkage to the other two small banks. We observe that the
large bank is less systemically important compared with the others;
i.e., the large bank is not “too big to fail.”

If v = 1/2, the large bank X; invests (1,1/2,1/2) in three
projects. Hence it is involved in all three projects, which creates
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the linkage to the other two small banks. In this case, it is “too big
to fail.” The inequality becomes an equation if and only if u = 1/4.
For = 1/4, the three banks all invest in three projects proportional
to their capital demands. They have exactly the same strategy in
managing their portfolios. A crisis in any of the three banks will be
accompanied by crises in the other two. Therefore, they are equally
systemically important. Excluding p = 1/4, the large bank will be
the most systemically important bank.

If ~v is close to 0, the large bank X7 focuses on the large project
Y7, while it still has exposures on Y5 and Y3. The small banks X5 and
X3 focus on the two small projects Yo and Y3. Now it matters how
similar their portfolios are. If p is in the middle (u* < p < 1—y—p*),
then the balance sheet composition of two small banks is relatively
similar. Hence, they are more systemically important compared
with the large bank. If p is close to the corner (0 < p < p* or
1—vy—p* < pu<1-=r), then the two small banks differ in their
balance sheets. Since the large bank still has exposures on Y5 and
Y3 equally, it is the most systemically important bank. It is worth
mentioning that the systemic importance of bank X is determined
not only by its own risk positions but also by the risk-taking behav-
ior of the others. Even though the portfolio of bank X is fixed by
fixing v, the change of the portfolios hold by the other two banks
can still result in a change of the systemic importance of X;.

To summarize, we observe that “too big” is not necessarily the
reason for being “too systemically important.” Instead, a bank hav-
ing a balance sheet that is exposed to more risky projects would
cause it to become more systemically important. Here, we regard
Y;, 1 = 1,2,3 as different risky projects. One may also regard them
as different risky banking activities. Therefore, a bank that is more
diversified in banking activities may turn out to be “too big to fail.”

Notice that having a diversified balance sheet is the usual way
of managing individual risk. In order to obtain the diversification,
banks, particularly large banks, will be spurred on to take part in
more banking activities. The above discussion shows that this will
simultaneously result in a “too big to fail” problem. Conversely,
a large bank specialized in a limited number of banking activities
might be risky as an individual but at the same time less system-
ically important. There is a trade-off between managing individual
risk and keeping a sense of independence within the entire banking
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system. For maintaining the stability of the financial system, it is
necessary for the regulators to recognize such a trade-off and impose
proper regulations in order to give banks incentives to balance their
individual risk position and systemic importance.

5. Empirical Results

5.1  Empirical Setup and Data

We apply the three proposed measures of systemic importance to an
artificially constructed financial system consisting of twenty-eight
U.S. banks. After estimating the three measures, we calculate the
correlation coefficients between these measures and the measures of
the size of the banks. From the test on correlation coefficients, we can
empirically test whether larger banks exhibit larger systemic impor-
tance, thereby testing the “too big to fail” argument. We also con-
sider a moving window approach, which demonstrates the variation
of the systemic importance measures across time.

The data set for constructing the systemic importance meas-
ures consists of daily equity returns of twenty-eight U.S. banks
listed on the New York Stock Exchange (NYSE) from 1987 to 2009
(twenty-three years).> The chosen banks are listed in table 1 with
the descriptive statistics on their stock returns.

Regarding the size of the banks, the data set consists of various
measures. We consider total assets, total equity, and total debt for
the twenty-eight banks.* The data that appear are reported in a
yearly frequency from 1987 to 2009. For each bank, we present the
end-of-2009 values as well as the average values across the twenty-
three years in table 2.

From the descriptive statistics of the equity returns, we observe
that all daily returns exhibit high kurtosis compared with the

3The data are obtained from Datastream. Three selection criteria are applied:
the financial institutions should be classified in the sector “Banks”; they should
be traded primarily on the NYSE (DS code starting with “U:”); and the time
series should be active from the beginning of 1987 till the end of 2009. The
selection procedure results in twenty-eight banks.

4The data on total assets, total equity, and total debt are obtained from Data-
stream, with item code WC02999, WC03501, and WC03255, respectively. Notice
that total debt consists of short-term debt, current portion of long-term debt,
and long-term debt.
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Table 1. Descriptive Statistics on Daily Stock Returns of
Twenty-Eight U.S. Banks

Std.
Banks Mean | Dev. | Min. | Max. | Skew. | Kurtosis
BancorpSouth 0.040 | 2.28 |—15.12 | 19.71 0.23 8.63
Bank of America 0.031 2.70 |—34.12 | 30.21 | —0.35 32.80
Bank of Hawaii 0.045 1.78 | —25.51 | 12.95 | —0.63 19.77
BB&T 0.041 2.09 |—26.61 | 21.20 0.12 19.53
Central Pacific 0.009 | 3.44 |—66.87 | 69.31 0.28 68.85
Citigroup 0.020 | 2.98 | —49.47 | 45.63 | —0.50 42.92
City National 0.029 | 2.29 |—18.92 | 20.21 0.13 11.15
Community Bank® 0.041 2.30 | —14.22 | 16.55 0.37 9.11
Comerica 0.038 | 2.13 | —22.69 | 18.81 | —0.16 18.68
Cullen/Frost Bankers 0.054 | 2.17 |—21.46 | 19.78 0.17 13.52
First Horizon National 0.033 | 2.36 |—44.11 | 25.54 | —1.18 45.41
FNB 0.024 | 2.52 |—25.53 | 19.57 | —0.19 14.23
JP Morgan 0.033 | 2.55 |—32.46 | 22.39 | —0.12 17.58
KeyCorp 0.011 2.56 | —40.55 | 43.34 | —0.51 50.04
M&T Bank 0.054 | 1.75 |—17.59 | 22.83 0.33 24.60
Marshall & Ilsley 0.017 | 2.53 |—30.15| 32.93 | —0.23 40.12
Old National Bancorp 0.019 | 1.74 | —19.47 | 15.84 0.31 16.55
PNC 0.031 2.28 | —=53.44 | 31.55 | —1.30 68.26
Regions Financial 0.001 2.76 | —52.88 | 39.48 | —0.62 56.56
Sterling 0.017 | 2.27 |—21.26 | 19.39 0.27 12.36
Suntrust Banks 0.023 | 2.40 |—31.71 | 26.67 | —0.39 29.95
Synovus Financial 0.017 2.78 | —30.07 | 24.86 | —0.02 17.68
TCF Financial 0.047 | 2.35 |—17.65 | 23.53 0.49 13.73
US Bancorp 0.054 | 2.17 | —20.05 | 25.76 0.22 18.69
Valley National Bancorp | 0.034 2.22 | —-17.48 | 21.71 0.29 11.39
Webster Financial 0.024 | 2.56 |—23.51 | 31.03 0.07 20.03
Wells Fargo 0.060 2.35 | —27.21 | 28.34 0.66 27.47
Wilmington Trust 0.026 | 2.11 |—23.12 | 27.62 0.05 20.85

Notes: The sample period runs from January 2, 1987, to December 31, 2009 (sample
size 6,000). All values except the skewness and kurtosis are in percentages. The list
consists of all banks that are preliminarily traded on the NYSE during the sample

period.

aCommunity Bank N.A. (CBNA) is a bank holding company in Upstate New York. Its
predecessor bank was founded in 1866, and it is the wholly owned banking subsidiary
of Community Bank System, Inc. (CBSI).

kurtosis from the normal distribution, which is 3. This indicates that
the daily stock returns may follow heavy-tailed distributions. More-
over, most of the skewness measures are negative or close to 0. This
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Table 2. Descriptive Statistics on Yearly Size Measures of
Twenty-Eight U.S. Banks

Total Asset Total Equity Total Debt
Banks 2009 | Average | 2009 | Average | 2009 | Average
BancorpSouth 13.2 6.5 1.3 0.6 1.0 0.5
Bank of America 2223.3 648.4 | 193.6 51.4 764.7 199.3
Bank of Hawaii 12.4 11.3 0.9 0.9 1.7 2.2
BB&T 165.2 55.0 16.2 5.1 29.5 11.3
Central Pacific 4.9 2.4 0.2 0.2 0.9 0.3
Citigroup 1856.6 | 1145.3 | 1524 73.1 561.3 346.8
City National 20.9 8.6 1.8 0.8 1.4 0.8
Community Bank 5.4 2.3 0.6 0.2 0.9 0.3
Comerica 59.2 38.4 4.8 3.1 11.5 6.9
Cullen/Frost Bankers 16.3 7.4 1.9 0.6 0.9 0.6
First Horizon National 26.1 18.4 2.1 1.3 6.8 4.6
FNB 8.7 3.9 1.0 0.3 1.2 0.5
JP Morgan 2032.0 655.8 | 157.2 45.9 625.3 173.5
KeyCorp 92.7 69.7 7.9 5.2 13.6 16.6
M&T Bank 68.9 28.5 7.0 2.7 12.7 5.5
Marshall & Ilsley 56.2 26.0 5.3 2.4 7.5 5.3
Old National Bancorp 7.9 6.0 0.8 0.5 1.0 1.0
PNC 269.9 87.3 21.6 6.9 39.3 18.4
Regions Financial 142.3 48.8 14.1 5.3 22.1 8.0
Sterling 2.1 1.2 0.1 0.1 0.3 0.2
Suntrust Banks 174.2 92.8 17.5 8.2 22.9 17.3
Synovus Financial 32.8 14.6 1.9 1.4 2.2 1.4
TCF Financial 17.9 9.7 1.2 0.7 4.8 2.4
US Bancorp 281.2 109.6 24.5 9.6 63.9 26.9
Valley National Bancorp 14.3 6.9 1.3 0.5 3.3 1.1
Webster Financial 17.6 9.0 1.5 0.7 2.0 2.1
Wells Fargo 1240.4 295.0 |103.3 23.3 242.8 69.8
Wilmington Trust 10.9 6.9 1.0 0.6 1.0 1.2
Notes: The sample period is from 1987 to December 2009 (twenty-three years). The
list consists of all banks that are preliminarily traded on the NYSE during the sample
period. The numbers are in millions of U.S. dollars.

indicates that the heavy-tailedness may come from the downside of
the distribution, the losses. Hence, our heavy-tailed assumption on
the tail of losses is valid for the data set employed.

From the descriptive statistics of the size measures, we observe a
large variation on the size measures of the selected banks. The top
three largest banks in the list—Bank of America, JP Morgan, and
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Citigroup—are approximately 1,000 times larger than the smallest
bank in the list, Sterling Banc, in all aspects. Although the criterion
that the selected banks have to be active in the stock market for
twenty-three years may result in a sample selection bias, since such
banks are more likely to be large banks, the variation of the size
measures shows that the constructed banking system contains both
large and small banks.

Using the stock returns is a natural choice for our approach in
analyzing the systemic importance. The restriction imposed by the
methodology of estimating the L function is that the sample size
has to be sufficient; see appendix 2. Moreover, since we intend to
perform a moving window analysis, the restriction on the length of
the time series is further enhanced. Therefore, daily or higher fre-
quency is necessary for a full non-parametric approach. This limits
us to using financial market data. Equity returns are the most con-
venient choice. Other high-frequency indicators such as CDS spreads
are also possible. Nevertheless, the CDS data do not go back for a
sufficiently long period, which keeps us from performing a moving
window analysis. It is also possible to apply the proposed method-
ology with low-frequency data, such as return on asset from bank
balance sheet. In that case, a full non-parametric estimate on the L
function is not applicable. Instead, further modeling on the L func-
tion should be considered. In this study we intend to illustrate the
methodology without modeling the L function. Hence, we stick to
the equity return data.

5.2 Estimation of the Systemic Importance Measures

By estimating the L function (for details, see appendix 2), we obtain
the estimates of the three systemic importance measures (SII, PAO,
and VI) across the full sample period, as shown in table 3. We start
with the PAO measure proposed by Segoviano and Goodhart (2009).
A general observation is that all of the estimates are quite high
(above 60 percent). This is in line with our prediction that the PAO
measures of all banks in a system are at a relatively high level and do
not differ much from each other. Since the PAO measure is directly
connected to the VI measure as shown in corollary 1, a similar feature
is observed for the VI measures. In fact, the order of the VI measures
follows that of the PAO measures as proved in corollary 1. To name
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Table 3. Estimated Systemic Importance Measures:
Full Sample Analysis

Banks SII PAO VI
BancorpSouth 6.72 59.44% 6.73%
Bank of America 10.84 94.44% 10.28%
Bank of Hawaii 10.44 84.44% 9.30%
BB&T 10.88 86.11% 9.46%
Central Pacific 8.68 65.00% 7.31%
Citigroup 10.59 90.56% 9.90%
City National 9.30 76.11% 8.46%
Community Bank 6.53 59.44% 6.73%
Comerica 12.02 92.78% 10.12%
Cullen/Frost Bankers 8.05 73.89% 8.23%
First Horizon National 10.84 83.33% 9.19%
FNB 7.41 57.78% 6.55%
JP Morgan 9.76 86.67% 9.52%
KeyCorp 12.44 93.33% 10.18%
M&T Bank 11.10 86.67% 9.52%
Marshall & Ilsley 11.92 93.89% 10.23%
Old National Bancorp 9.36 77.78% 8.63%
PNC 10.73 86.11% 9.46%
Regions Financial 11.91 90.56% 9.90%
Sterling 8.69 65.56% 7.37%
Suntrust Banks 12.11 92.78% 10.12%
Synovus Financial 10.11 83.89% 9.24%
TCF Financial 10.57 81.11% 8.96%
US Bancorp 10.32 78.89% 8.74%
Valley National Bancorp 7.82 65.00% 7.31%
Webster Financial 9.87 82.22% 9.07%
Wells Fargo 11.25 90.00% 9.85%
Wilmington Trust 10.91 83.33% 9.19%
Notes: SII is the systemic importance index, defined as the number of expected
bank failures given a particular bank fails; see (2). PAO is the probability of having
at least one extra bank failure when a particular bank fails, defined in (1). VI is the
vulnerability index, defined as the probability of failure given there exists at least
another bank failure in the system; see (3).

a few banks with the highest PAO and VI measures, Bank of Amer-
ica reports the highest PAO at 94.44 percent, followed by Marshall
& llsley with 93.89 percent and KeyCorp with 93.33 percent. The
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corresponding VI measures are 10.28 percent, 10.23 percent, and
10.18 percent, respectively. At the bottom of the list ranked by
the PAO measure, we have FNB, BancorpSouth, and Community
Bank.®

The SII measure introduced in this paper gives a somewhat dif-
ferent outlook compared with the PAO measure. The three lowest
SII banks are the same as those with the lowest three PAO measures,
although with a different order. The lowest SII measure comes from
Community Bank, which is 6.53. This means that if Community
Bank is experiencing a crisis, it will be accompanied by an aver-
age of 5.53 extra failures in this system. Compared with the size of
the system, twenty-eight banks, this is not a high systemic impact.
The highest estimated SII measure is 12.44 from KeyCorp, which is
almost twice as high as the lowest value. A crisis of KeyCorp will
be accompanied by an average of 11.44 extra crises in this system,
twice the systemic impact of Community Bank. Hence, we observe
a variation of the SII measure across different banks. To name a few
with the highest SII measures, the top three are KeyCorp (12.44),
Suntrust Banks (12.11), and Comerica (12.02). They are different
from the banks with the top-three highest PAO. In general, rank-
ing the PAO measures is different from ranking the SII measures.
For example, the bank with the highest PAO, Bank of America, is
only ranked at tenth place among all banks when considering the
SIT measure.

To summarize, the comparison between the three measures shows
that although they have different economic backgrounds, the PAO
measure and the VI measure are equally informative in terms of
ranking the systemic importance of financial institutions. The SII
measure, in contrast, provides information on the size of the sys-
temic impact corresponding to the failure of a particular bank. It
therefore provides a different view than the other two. Across differ-
ent banks, the SIT measures vary while the PAO measures remain at
a high, comparable level. This agrees with our theoretical prediction.
Therefore, the SII measure is more informative in distinguishing the
systemic importance of financial institutions.

®Community Bank N.A. (CBNA) is a bank holding company in Upstate New
York. Its predecessor bank was founded in 1866, and it is the wholly owned
banking subsidiary of Community Bank System, Inc. (CBSI).
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Besides estimating the three systemic importance measures from
the full sample period, we consider sub-samples for the estimation
and perform a moving window approach. By moving the sub-sample
window, we could obtain time-varying estimation on the systemic
importance measures. We consider the estimation window as 2,000
days (approximately eight years), and then move the estimation win-
dow forward month by month. The first possible window ends at
September 1994. In other words, the first estimation considers data
ending at September 30, 1994, and going back 2,000 days. From then
on, we take the end of each month as the ending day of each esti-
mation window and use the data going back 2,000 days. By moving
the estimation window month by month, we observe the estimates
at the end of each month from September 1994 to December 2009.
For simplicity’s sake, we only plot the results for selected banks,%
as shown in figure 1. The upper panel shows the moving window
SIT measures, and the bottom panel shows the moving window PAO
measures. The two vertical lines in the two figures correspond to the
failures of two large investment banks: Bear Stearns (March 2008)
and Lehman Brothers (September 2008).

From the moving window SII estimates, we observe that the SII
measures gradually increased from 1998 to 2003, then remained rel-
atively stable until the end of 2006. From 2007, there was a sharp
rise. The sharp rise of SII started before the failure of Bear Stearns
and continued with the failure of Lehman Brothers, until early 2009.
From mid-2009, the SII measures became stable and with a slight
downward slope. In contrast, the PAO measures are stable across
time, particularly for the large banks. Only for the least systemi-
cally important bank can some variation be observed. This is due
to the fact that the PAO measures of large banks were already at a
high level in the early period of our sample. It would thus be difficult
to obtain a further rise to a higher level.

The observations from the moving window approach again con-
firm our theoretical prediction that the PAO measures always stay
at a high, comparable level, while the SIT measure varies across time

SWe select the least systemically important bank, Community Bank, and the
two largest banks, Bank of America and JP Morgan, in the plots. According to
the full sample analysis, Bank of America is the most systemically important
bank in terms of PAO.
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Figure 1. Moving Window Results on Systemic
Importance Measures
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Notes: The moving window measures are estimated from a 2,000-day sub-sample
ending at the end of each month. The upper panel presents the results for SII,
which is the systemic importance index, defined as the number of expected bank
failures given a particular bank fails; see (2). The bottom panel presents the
results for PAO, which is the probability of having at least one extra bank failure
when a particular bank fails, defined in (1). The two vertical lines refer to the
failures of Bear Stearns (March 2008) and Lehman Brothers (September 2008).
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and across institutions. The sharp rise of the SII measures addresses
the crisis starting from 2008 and hence is more informative in ana-
lyzing the systemic risk in a financial system. Although we observe
an early rise before the crisis, we do not emphasize that the SII
measure is a predictor of the crisis. The sharp rise of SII measures
might either be a predictor of the crisis or an ex post consequence
caused by the crisis. The intuition for the latter possibility is as fol-
lows. Banks tend to take similar strategies, such as fire sales, during
a crisis, which may result in more similar portfolio holdings across
all banks. According to the theoretical model in section 4, that sim-
ilarity leads to an increase of the SIT measures on all banks. Hence,
the timing of the sharp rising of the SII measures is still an open
issue for further study.

There are a few other observations from the moving window
analysis. Notice that the financial system we have constructed con-
tains twenty-eight banks. An SII measure of 15 means that if a
certain bank fails, there will be an average of fourteen extra bank
failures simultaneously. This is half of the entire system, which must
be considered as a severe risk. Hence, the observed SII measures from
the end of 2008 to mid-2009 indicate that the banking system suf-
fers severe systemic risk during the crisis. Moreover, it is remarkable
that Community Bank, the least systemically important bank from
the full sample analysis, also showed the least systemic importance
during the crisis. Nevertheless, the absolute level of the SIT measure
reached a comparable level with the other large banks. This sug-
gests that size may not be a good proxy of systemic importance,
particularly during periods of crisis.

5.8 Test “Too Big to Fail”

We use the estimated systemic importance measures to check
whether they are correlated with the size measures. The correla-
tion test is across different banks; thus, we need to have a unified
value for each individual bank on each size measure. Since the sam-
ple period ends in year 2009, we first consider the end-of-2009 values
of each size measure. The second approach is to take an average of
the size measures over the full sample period (from 1987 to 2009).
Then, we calculate the Pearson correlation coefficients between
each pair of size measure and systemic importance measure across
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Table 4. Correlation Coefficients: Full Sample Analysis

SII PAO VI
Total Asset 0.1790 0.3968** 0.3943**
(0.3622) (0.0366) (0.0379)
End of 2009  Total Equity 0.1892 0.4053** 0.4027**
(0.3348) (0.0324) (0.0336)
Total Debt 0.1399 0.3640* 0.3615*
(0.4777) (0.0569) (0.0588)
Total Asset 0.1733 0.3746** 0.3723*
(0.3779) (0.0495) (0.0510)
Average Total Equity 0.1980 0.4031** 0.4006**
(0.3126) (0.0334) (0.0347)
Total Debt 0.1542 0.3546* 0.3523*
(0.4334) (0.0641) (0.0660)

Notes: SII is the systemic importance index, defined as the number of expected
bank failures given a particular bank fails; see (2). PAO is the probability of hav-
ing at least one extra bank failure when a particular bank fails, defined in (1). VI
is the vulnerability index, defined as the probability of failure given there exists at
least another bank failure in the system; see (3). The numbers in parentheses are the
p-values for testing whether the correlation coefficient is significantly different from
zero. The upper panel reports the results based on using end-of-2009 values of the
size measure, while the lower panel reports the results based on using the average of
the size measure across the full sample period (from 1987 to 2009). ***, ** and *
denote significance at the 1 percent, 5 percent, and 10 percent level, respectively.

twenty-eight banks. Moreover, we test whether the correlation coef-
ficient is significantly different from zero. The results are shown in
table 4.

Generally, the PAO and VI measures are positively correlated
with the size measures, with significance level 5 percent or 10 per-
cent. Put differently, the SIT measure is not correlated with any size
measure. We have argued throughout the paper that the SII meas-
ure is a more informative measure of systemic importance, because
it considers the systemic impact of the failure of a particular bank.
We conclude that the systemic impact of a bank failure is not corre-
lated with the size measures. Therefore, “too big to fail” is not valid
on the impact level at least for the constructed banking system.
Nevertheless, with the positive correlation between the other two
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systemic importance measures and the size measures, the big banks
are more likely to cause extra crises in the system. The bottom line
is that it is not proper to use the size measures as a proxy of sys-
temic importance. Instead, it is necessary to consider all of the sys-
temic importance measures when identifying systemically important
financial institutions.

We have carried out extensive robustness checks for the observed
results. First of all, with the full sample estimation on the systemic
risk measure, we consider the size measure in other years (e.g., end
of 2008, 2007, etc.). The results are comparable with those using the
end-of-2009 value. We omit the details.

Secondly, instead of the Pearson correlation, we consider
the Spearman correlation, which only emphasizes the correlation
between ranking orders. The Spearman correlation coefficients
between the SII measure and the size measures are significantly dif-
ferent from zero. Since the Pearson correlation considers the absolute
level while the Spearman correlation considers only the ranking
orders, we find support of the “too big to fail” argument within
the constructed system, only in terms of ranking the order.

Thirdly, with the moving window results on the systemic impor-
tance measures, we can get the end-of-year estimates on the systemic
importance measures from 1994 to 2009 (sixteen years). We pool all
of the bank-year estimates together, which results in 28 - 16 = 448
estimates for each systemic importance measure, and also 448 obser-
vations for each size measure. We then calculate the Pearson correla-
tion coefficient for each pair and repeat the test on the significancy.
The results appear in the first panel of table 5. None of the three
systemic importance measures are correlated with any of the size
measures.

Moreover, since we have obtained sixteen-year data on systemic
importance and size for twenty-eight banks, we also perform the
Pearson correlation analysis at the level of each year. We observe
that the significant positive correlation between size and the PAO
measure (and the VI measure) is robust for the sub-period 1994-99.
From 2000 to 2009, the significance disappears. Interestingly, for the
first period, the SII measure is also positively correlated with the
three size measures. The (in)significant results are robust within
each sub-period. To further explore these phenomena, we divide
the period 1994-2009 into two sub-periods: 1994-99 and 200009,
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Table 5. Correlation Coefficients:
Moving Window Analysis
SII PAO VI
Total Asset 0.0263 0.2073 0.2069
(0.8943) (0.2900) 0.2908
Full Sample  Total Equity 0.0474 0.2188 0.2183
(0.8107) (0.2633) (0.2645)
Total Debt —0.0080 0.1665 0.1667
(0.9678) | (0.3971) (0.3966)
Total Asset 0.4541** 0.4950*** 0.4911***
(0.0152) (0.0074) (0.0080)
Period 1: Total Equity 0.4727** 0.5111*** 0.5072***
1994-99 (0.0111) | (0.0054) (0.0059)
Total Debt 0.4648** 0.5014*** 0.4973***
(0.0127) (0.0066) (0.0071)
Total Asset 0.2192 0.2295 0.2297
(0.2624) | (0.2402) (0.2396)
Period 2: Total Equity 0.2261 0.2374 0.2375
2000-09 (0.2473) | (0.2238) (0.2235)
Total Debt 0.1915 0.1907 0.1914
(0.3290) (0.3310) (0.3293)

Notes: SII is the systemic importance index, defined as the number of expected
bank failures given a particular bank fails; see (2). PAO is the probability of hav-
ing at least one extra bank failure when a particular bank fails, defined in (1). VI
is the vulnerability index, defined as the probability of failure given there exists at
least another bank failure in the system; see (3). The numbers in parentheses are the
p-values for testing whether the correlation coefficient is significantly different from
zero. The upper panel reports the results based on pooling all bank-year observations
(448 observations). The middle and lower panels report the results based on pooling
bank-year observations in two periods: 1994-2000 and 2001-09. ***,  ** ‘and * denote
significance at the 1 percent, 5 percent, and 10 percent level, respectively.

according to the individual year results. Then we pool bank-year
data in each sub-period and repeat the Pearson correlation analysis.
The results are reported in the second and third panels of table 5.
It confirms the results from the individual-year analysis: in the first
period, all three systemic importance measures are highly correlated
with the size measures, while in the second period, the correlations
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disappear. It suggests that using size as a proxy for systemic impor-
tance was proper in the 1990s, but that the situation has changed
from the beginning of the new century. Therefore, it is particularly
important to consider the measures on systemic importance within
the current financial world.

Last but not least, using daily equity returns may present a
potential problem due to the heteroskedasticity in high-frequency
financial returns. Diebold, Schuermann, and Stroughair (2000) argue
that the fundamental assumption of EVT—that the observations are
independent and identically distributed (i.i.d.)—is usually violated
when dealing with high-frequency financial returns. They provide
two potential solutions: firstly, one may investigate low-frequency
block maxima, which reduces the dependency across time; secondly,
one may apply a conditional extreme value model. In line with the
second type of solution, Chavez-Demoulin, Davison, and McNeil
(2005) consider a point process approach to decluster the finan-
cial return data. Notice that the non-i.i.d. problem is mainly for
evaluating the univariate tail events. Because our study is under a
multivariate framework, which models cross-sectional dependence of
tail events, the non-i.i.d. problem on the time dimension is of less
concern. Nevertheless, we conduct a robustness check in line with
the first type of solution proposed by Diebold, Schuermann, and
Stroughair (2000). Instead of daily returns, we consider monthly
returns. Similar to the block maxima approach, considering monthly
returns reduces the interdependent problem on the time dimension.
Due to the low frequency, we have to use the full sample (276
months) for the analysis. The results appear in table 6. The esti-
mates of the three systemic risk measures are similar to those using
daily returns—at least in terms of ranking the systemic importance.
The absolute level is higher than that using daily returns, because it
is more likely to observe simultaneous tail events in the same month.
We repeat the Pearson correlation analysis as shown in table 7.
Again, we confirm that the systemic importance measures are not
correlated with the size measures.

6. Conclusion

This paper considers three measures of systemic importance of finan-
cial institutions in a financial system. Since we regard the system as



Vol. 6 No. 4 Are Banks Too Big to Fail? 237

Table 6. Systemic Importance Measures: Monthly Data

Banks SII PAO VI
BancorpSouth 10.15 75.00% 11.28%
Bank of America 11.70 85.00% 12.59%
Bank of Hawaii 11.60 100.00% 14.49%
BB&T 13.50 90.00% 13.24%
Central Pacific 8.65 90.00% 13.24%
Citigroup 12.00 95.00% 13.87%
City National 10.20 80.00% 11.94%
Community Bank 9.10 75.00% 11.28%
Comerica 13.40 100.00% 14.49%
Cullen/Frost Bankers 10.20 95.00% 13.87%
First Horizon National 9.85 75.00% 11.28%
FNB 9.45 75.00% 11.28%
JP Morgan 10.80 90.00% 13.24%
KeyCorp 12.45 90.00% 13.24%
M&T Bank 13.10 95.00% 13.87%
Marshall & Ilsley 13.15 100.00% 14.49%
0Old National Bancorp 8.25 70.00% 10.61%
PNC 12.20 95.00% 13.87%
Regions Financial 11.85 95.00% 13.87%
Sterling 9.80 65.00% 9.92%
Suntrust Banks 12.85 100.00% 14.49%
Synovus Financial 11.25 95.00% 13.87%
TCF Financial 10.60 90.00% 13.24%
US Bancorp 12.80 100.00% 14.49%
Valley National Bancorp 10.80 85.00% 12.59%
Webster Financial 11.35 90.00% 13.24%
Wells Fargo 13.50 90.00% 13.24%
Wilmington Trust 11.35 95.00% 13.87%
Notes: SII is the systemic importance index, defined as the number of expected
bank failures given a particular bank fails; see (2). PAO is the probability of having
at least one extra bank failure when a particular bank fails, defined in (1). VI is the
vulnerability index, defined as the probability of failure given there exists at least
another bank failure in the system; see (3).

the combination of individual institutions, it is a multivariate, rather
than bilateral, relation. We consider the PAO measure proposed by
Segoviano and Goodhart (2009), as well as two new measures: the
SII measure, which measures the size of the systemic impact if one
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Table 7. Correlation Coefficients: Monthly Data

SII PAO VI

Total Asset 0.2137 0.1028 0.1068

(0.2749) (0.6027) (0.5884)

End of 2009 Total Equity 0.2254 0.1034 0.1075
(0.2488) (0.6005) (0.5862)

Total Debt 0.1489 0.0673 0.0714

(0.4497) | (0.7335) | (0.7182)

Total Asset 0.1981 0.1460 0.1488

(0.3121) (0.4585) (0.4498)

Average Total Equity 0.2259 0.1530 0.1560
(0.2478) | (0.4371) | (0.4279)

Total Debt 0.1728 0.1272 0.1300

(0.3792) (0.5189) (0.5098)

Notes: SII is the systemic importance index, defined as the number of expected
bank failures given a particular bank fails; see (2). PAO is the probability of hav-
ing at least one extra bank failure when a particular bank fails, defined in (1). VI
is the vulnerability index, defined as the probability of failure given there exists at
least another bank failure in the system; see (3). The numbers in parentheses are the
p-values for testing whether the correlation coefficient is significantly different from
zero. The upper panel reports the results based on using end-of-2009 values of the
size measure, while the lower panel reports the results based on using the average
of the size measure across the full sample period (from 1987 to 2009). There is no
significance result under the 10 percent level.

bank fails, and the VI measure, which measures the impact on a
particular bank when the other part of the system is in distress.

We use a theoretical model based on affine portfolio holdings to
show that a large bank is not necessarily more systemically impor-
tant in terms of the three proposed systemic importance measures.
Only with diversified banking activities might a large bank become
systemically important. In contrast, the crisis of an isolated large
bank will not pose a threat to the system.

The discussion can be extended to regulation policy debate. With
acknowledgment of the trade-off between micro-level risk manage-
ment and systemic importance, we must conclude that there is a
great need for macroprudential approaches on financial regulation
and supervision. Moreover, measuring systemic importance is the
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key to identifying systemically important institutions when imposing
macroprudential regulations.

Besides developing the theoretical model, we conduct an empir-
ical analysis—using multivariate EVT—to estimate the systemic
importance measures. The empirical observation confirms that the
PAO measure is not as informative as the SII measure in terms of
distinguishing the systemically important banks. A moving window
analysis shows similar results. Moreover, the VI measure is shown
to be as informative as the PAO measure in terms of identifying
systemically important banks.

We use the estimated systemic importance measures to test
whether they are correlated with the measures on bank size. Regard-
ing the systemic impact of bank failure measured by the SII measure,
there is no empirical evidence supporting the “too big to fail” argu-
ment in terms of the Pearson correlation. In contrast, the other two
systemic importance measures, PAO and VI, are positively corre-
lated to the size measures. When considering the Spearman corre-
lation, we find support for “too big to fail.” Moreover, we find that
in the more recent period the correlations disappear, which suggests
that particular attention should be given to the systemic importance
measures in recent years.

The empirical analysis in this paper is based on an artificial bank
system. Therefore, the evidence from the empirical analysis should
not be regarded as either support or disproof of the “too big to fail”
argument. The bottom line is that we show the possibility of having
a banking system in which the size measures are not a good proxy
of the systemic importance.

Although in the current empirical analysis our proposed SII
measure is shown to be more informative than the PAO measure pro-
posed by Segoviano and Goodhart (2009), we address one potential
drawback of the SII measure: it is a simple counting measure that
takes no account of the differences between potential losses when
different financial institutions fail. In other words, when calculating
the expected number of failures in the system, the SII measure does
not distinguish whether it causes a failure of a big bank or a small
bank. This could be improved by considering the expected total
loss in the system if one bank fails—i.e., calculating the expected
shortfall conditional on a certain bank failure, which incorporates
the size of all banks. Acharya, Santos, and Yorulmazer (2010) have
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designed systemic importance measures in this manner, while tak-
ing the heavy-tailedness of individual returns into consideration. To
model the dependence structure, they use dynamic conditional cor-
relation (DCC) models, which have an EVT flavor but deviate from
the multivariate EVT framework. A systemic importance measure
addressing the conditional expected shortfall under the multivariate
EVT framework may overcome the drawback of the proposed SII
measure. This is left for future research.

Appendix 1. Proofs

Proof of Proposition 1
Recall the definition of the PAO measure in (1). We have that

_ P{3j #1, st. X;>VaR;(p)} N{X; > VaRi(p)})
FAC(p) = PX, > VaR(p)

_ ;P({Hj £i, st X; > VaR;(p)}) +1

_ ;P({Elj #i, st. X; > VaR;(p)} U{X; > VaRi(p)})
= ;p({aj #i, st. X;>VaR;(p)})+1

N ;p({aj, st. X; > VaR;(p)})
= +1- I

From the definition of the L function in (4), as p — 0, Iy —
L4i(1,1,...,1) and I — L(1,1,...,1), which implies (6).

Proof of Proposition 3
Recall the definition of the SII measure in (2). We have that

d

SII;(p) = ZE(lXj>VaRj(p)|Xi > VaR;(p))
=1
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From the definition of the L function in (4), as p — 0,

P(X] > VaRj(p) or X; > VaRZ(p))
p

— Li,j(la 1)
The relation (8) is thus proved.

Proof of Corrollary 1

Since L(1,1,...,1) — 1 < 0, the relation (7) implies that a
higher value of the VI measure corresponds to a higher level of
L4i(1,1,...,1). Together with (6), the corollary follows.

Proof of Theorem 1

Firstly, since the heavy-tailed feature in (11) assumes that the right
tail of Y; dominates its left tail, it is sufficient to assume that Y; are
all positive random variables for ¢ = 1,2, 3, i.e., without the left tail.
We adopt this assumption in the rest of the proof.

We use the Feller convolution theorem to deal with the sum of
independently heavy-tailed distributed random variables as in the
following lemma.

LEMMA 2. Suppose positive random wvariables U and V' are inde-
pendent. Assume that they are both heavy-tailed distributed with the
same tail index . Then, as s — 00,
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PU+V >s)~PU>s)+ PV >s).

Notice that the heavy-tailed feature implies P(U > s)P(V >
s) = o(P(U > s)+ P(V > s)), as s — oo. Hence, the Feller
convolution theorem is equivalent to

P(U+V > s)~ P(max(U, V) > s);

i.e., the sum and the maximum of two independently heavy-tailed
distributed random variables are tail equivalent. A proof using sets
manipulation can be found in Embrechts, Kiippelberg, and Mikosch
(1997). With an analogous proof under multivariate framework, a
multivariate version of the Feller theorem can be obtained. In the
multivariate case, the tail equivalence between two random vectors
is defined as the combination of having tail equivalence for each
marginal distribution and having the same L function for the tail
dependence structure. We present the result in a two-dimensional
context in the following lemma without providing the proof.

LEMMA 3. Suppose positive random variables Uy and Us are inde-
pendent. Assume that they are both heavy-tailed distributed with the
same tail index o. Then for any positive constants m;;, 1 <1i,7 < 2,
we have that the distribution functions of (m11U1 +miaUsz, ma1 Uy +
maooUs) and (mq11U1 V myoUs, mo1 Uy V maoUs) are tail equivalent.

To prove theorem 1, it is necessary to calculate the L function
of (X1, X5, X3) on points (1,1,0), (1,0,1), and (0,1, 1). The main
instrument in the calculation is lemma 3. We start by comparing the
individual risks taken by the three banks.

PROPOSITION 4. For the three-bank model on (X1,Xs, X3), as
p—0,

VaRs(p) = VaRs(p) ~ cVaRy(p), (13)

where

Cc = < (2_2’7)a+27a >—l/a
o\t (I -y —p)e '
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Proof of Proposition 4

From lemma 2, we get that, as s — oo,

P(X1>s)~P((2—2y)Y1 >s)+ P(7Ya > s) + P(vYs > s)
=((2—=27)"+279%)s “K(s). (14)

Similarly, we get that

P(Xy>s)=P(X3>s)~ (" +p*+ 1 —v—p)*)s “K(s).
(15)

By comparing (14) and (15), the relation (13) is a direct
consequence.

We remark that ¢ < 1. This is in line with the fact that the large
bank X; takes more risks than the small banks. Moreover, when
v > 1/2, we get ¢ > 1/2. In this case, the comparison between bank
risk taking is not proportional to the size. At a relative level, the
small banks are taking more risk. In other words, the large bank X3
benefits from diversification.

Next, we calculate L(1,1,0). Denote v(p) := VaR;(p). From
lemma 3, we get that, as p — 0,

P(X1 > VaR, (p) or Xo > V(IRQ(p))
~ P((2—=2v)Y1 VYo VY3 > v(p) or
YY1V (1= —p)YsVuYs > co(p))

_ v(p) v(p)
_P<Y1>(2_2’Y)\/OI'Y2>1,Y

v(p) v(p)
AU ey +P<YQ>W)

+P<Y3> vv(p) >

22
c

V
[y vy (v ]
« P(Y: > v(p)). (16)

o
2
<
|
|
=

o R
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From (14), we get that p ~ ((2—2v)* +2v*)P(Y1 > v(p)) as p — 0.
Together with (16) and (5), we have that

1(1,1,0) = lim P(Xy > VaR,(p) or X5 > VaRs(p))
p— D
(=20 V)" + (rv )" + (yv =2=2)°

- (2 —279)@ + 279 - 17

Due to the symmetry, we have that L(1,0,1) = L(1,1,0). Following
a similar calculation, we obtain that

(2)" +2 (i)

C

@-27)° 29

L(0,1,1) = (18)

Proposition 3 implies that SII, = SII3. Moreover, SII; > SII if and
only if L(1,1,0) < L(0,1,1). Hence it is only necessary to compare
the values of the L function at the two points.

Denote

Q= ((2—2y)+29%)(L(1,1,0) — L(0,1,1)).

We study the sign of () in order to compare the systemic importance
measures SII;, i = 1,2, 3.

Casel: 2<~y<1

S}ilnce v > 1/2, we have ¢ > 1/2. Thus, ﬁ > 2> %, which implies
that

1-— 1—v—
s 7>mw(v/#f§.
C C C

Therefore

0= ((@-mI) )

_ <(Z)a+2<“v(1;7_“)>a> > 0.

Hence, SII; < SIl, = S115.
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CASE 2: y=1/2

In this case, we still have ¢ > 1/2. The equality holds if and only
if 4 = 1/4. Due to the symmetric position between X5 and Xs,
without loss of generality, we assume that p < 1/4. Then we get
< 1—~— u. Moreover, the inequality p/v < 1/2 < ¢ implies that
v > £ and it is not difficult to obtain that v < 1_7%“ Hence,

o= (e (222 (@1 (52
o))

1 14 (1—2p) 20 2
20! 20 L+ (2p) + (1 —2p)~

14 2% - (1 * 22a> (1 1+ (2M)‘(Xzi)?1 - 2“)a>

< 1+2ia - <1+22a> <1 - 1+(1/(21)/“2f(1/2)a>
=0.

Here we used the facts that 1 (2u)(3 i)(j—zu)a is an increasing function

with respect to p and p < 1/4. The equality holds if and only if u =
1/4. Hence, in case v = 1/2, we conclude that SII; > SII, = SII3,

with the equality holding if and only if u = 1/4.
Case3: 0<~vy<1/3
In this case, it is not difficult to verify that 2—2v > T and v < 17,

2c

. 1—~
Due to the symmetry, we only consider the case 0 < p < =5+. Then

we have that u < 1 —+ — p and v < 2=2=£_ Therefore

[

u)a_7a+(1—7—u)“' (19)

Q=(2—27)°‘+(7VZ =

For any fixed 7, c¢ is a function of p denoted by ¢(u). For 0 < p

1_77, c(p) is a strictly decreasing function. Thus g(p) = ”) is

a
continuous, strictly increasing function. Notice that g(0) = 0 < v
and g((1 —~)/2) > ~. There must exist a unique p* € (0, (1 —7)/2)
such that g(p*) = .
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Denote ¢* := ¢(p*). From ‘;— =, we get that

,.Ya _ (C*)—a _ (2 B 2’7)(1 + 27(1
e e+ (L y =)

It implies that

1" (r)e = 2220740
e YA (L =y —p)e
Continuing from equation (19), we get that

Q) = (2= 29)" 497 = (1 + (1 =7 = §)) ()™ = 0

Hence, we conclude that for u = u*, SII; = SIl, = Slli3.
For 0 < p < p*, it is clear that

Q) =2=29)"+1" ="+ 1=y -
(2—29)+ 297
A pt A (== p)e
(2=29)" + ) =y (v + 1 =y — p)?)
Y+ pt (I —y =)
is a strictly increasing function with respect to p. Moreover, for
W< p< 1_77, Q is calculated as

Q) =2-27)"+p*—1" =1 =-7—w)"c "

_ « « « « (2 — 27)& + 27&
@=29)"+ (W= = (== )" oo A== p)e
22 =29)p + 29 (0" = = 1 =y —p)?)
YA pF (L= y = p)e ’
which is also a strictly increasing function with respect to p. There-
fore, for 0 < p < p*, Q < 0 while for p* < p < 17?7,Q>0.
Correspondingly, we have SII} > SII; = SII3 in the former case and
SII; < SII, = SII3 in the latter case.
Due to the symmetry, a similar result holds when 1_77 < p <
1 — 7, and the switch point is then 1 — vy — u*. More specifically, for
Y << 1—v—p* SI < SIL, = SII3; and for =1 —~ — u*,
Sy = SIly = SIg; for 1 — vy —p* < p <1 —r, SII > Sl = SIIs.
The theorem is thus proved for case 3.

=2-29)"+7y"- (" + A =y—=w)
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Proof of Lemma 1

Along the lines of the proof of theorem 1, we obtained that in a
three-bank model,

SII, — SII, = {1+ (2 — L(1,1,0)) + (2 — L(1,0,1))}
—{(2-L(1,1,0)) + 1+ (2 — L(0,1,1))}
= L(0,1,1) — L(1,0, 1).

Therefore, SII; > SII; if and only if Lg(1,1,...,1) >
L.j(1,1,...,1). Together with (6), the lemma is proved.

We remark that the above calculation is not based on the affine
portfolio model. Hence, the result is valid in a general three-bank
model. However, one cannot obtain similar relations when the num-
ber of banks exceeds three.

Appendix 2. Statistical Estimation on the L Function

Consider independently and identically distributed (i.i.d.) observa-
tions from the random vector (X1,..., X4) denoted by

{(X1$7X287 . '7de)’1 S S S n}

The sample size is n. The non-parametric approach of estimating
the L function starts from the assumption (4). Roughly speaking,
the estimation takes a certain p-value for which the VaR for each
dimension can be estimated by the order statistics. Then the proba-
bility in the numerator of (4) is estimated by a counting measure. To
ensure that p — 0, theoretically we take a sequence k := k(n), such
that k(n) — oo and k(n)/n — 0 as n — oo, and get an empirical
estimation of the L function from replacing p with k/n and using the
empirical estimation on the distribution function of (X7, Xs ..., Xy).
The explicit estimator is given as

1 n
L(zy,...,2q) := z E I3icicd, s.be Xio> X0 0 piny?

s=1
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where X; 1 < X; o < --- < X, are the order statistics of the i-th
dimension of the sample, X;1,...,X;,, for 1 < i < d. Particularly,
L(1,1,...,1) is estimated by

1 n
L(1,1,...,1):= % Z La1<ica, st Xio>Ximon:

s=1

For the estimator of the L function, usual statistical properties,
such as consistency and asymptotic normality, have been proved.
See, e.g., de Haan and Ferreira (2006).

Practically, the theoretical conditions on k are not relevant for a
finite sample analysis. Thus, how to choose a proper k in the esti-
mator is a major issue in estimation. Instead of taking an arbitrary
k, a usual procedure is to calculate the estimator of L(1,1,...,1)
under different k values and draw a line plot against the k val-
ues. With a low k value, the estimation exhibits a large variance,
while for a high k value, since the estimation uses too many obser-
vations in the moderate level, it bears a potential bias. Therefore,
k is usually chosen by picking the first stable part of the line plot
starting from low k, which balances the trade-off between the vari-
ance and the bias. The estimates follow from the k choice. Because
k is chosen from a stable part of the line plot, a small variation
of the k£ value does not change the estimated value. Thus, the
exact k value is not sensitive for the estimation on the L function.
Such a procedure has been applied in univariate EVT for tail index
estimation.

With the chosen k, we in fact consider a tail event as the loss
return exceeds a VaR with tail probability level k/n. In our empirical
application, the chosen k value differs according to the sample size.
For the full sample analysis (sample size 6,000), we choose k = 180,
which corresponds to a p level at 3 percent; for the moving window
analysis (sample size 2,000), we choose k& = 100, which corresponds
to p = 5%; for the monthly data analysis (sample size 276), we
choose k& = 20, which corresponds to p = 7.2%. With a lower num-
ber of observations, we choose a slightly higher level of p, albeit in
a low absolute level.
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